本课件是高二数学暑假班课程,里面包含文档讲义,整理了很多有用的知识点,可以帮助同学们有效地练习数学,提高自己的数学水平!1、向量的加法向量的加法满足平行四边形法则和三角形法则。AB+BC=AC。a+b=(x+x\’,y+y\’)。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y)b=(x\’,y\’)则a-b=(x-x\’,y-y\’).4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。3、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π。定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。有感兴趣的同学快下载学习吧,根据资料上讲解的知识点,再结合自身不理解的地方多多练习,不懂的可以多学习几遍,一定可以取得好成绩的!
尚孔数学高中讲义(word讲义)高二暑假版培优整理学习资料教材
阅读全文
本文链接:https://www.waxc.top/98125.html。
本站资源来自会员发布以及互联网公开收集,不代表本站立场,仅限学习交流使用,请遵循相关法律法规,请在下载后24小时内删除。 如有侵权争议、不妥之处请联系本站删除处理! 请用户仔细辨认内容的真实性,避免上当受骗!若您的权利被侵害,请联系2188975364@qq.com。
评论0